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[1] We present results from an inverse model study to determine biomass smoke
emissions for the year 1997 by comparison of modeled aerosol index (AI) with that
measured by the EP TOMS instrument. The IMPACT model with Data Assimilation
Office (DAO) meteorology data in 1997 is utilized to obtain aerosol spatial and temporal
distributions. Then a radiative transfer model is applied to generate the modeled AI. A
Bayesian inverse technique is applied to optimize the difference between the modeled
AI and the EP TOMS AI in the same period by regulating monthly a priori biomass smoke
emissions in seven predefined regions. The modeled AI with a posteriori emissions is
generally in better agreement with the EP TOMS AI. The a posteriori emissions from
Indonesia increase by a factor of 8–10 over the a priori emissions due to the Indonesian
fires in 1997. The annual total a posteriori source increases by about 13% for the year
1997 (6.31 Tg/yr black carbon and 67.27 Tg/yr smoke) in the base scenario, with a larger
adjustment of monthly emissions. The sensitivity of this result to the a priori uncertainties,
the height of the smoke layer, the cloud screening criteria, the inclusion of an adjustment
of emissions outside the main biomass burning regions, and the inclusion of the
covariances between observations in different locations is discussed in a set of sensitivity
scenarios. The sensitivity scenarios suggest that the inverse model results are most
sensitive to the assumed uncertainty for a priori emissions and the altitude of aerosol layer
in the model and are less sensitive to other factors. In the scenario where the uncertainty
of a priori emissions is increased to 100% (300% in Indonesia), the total annual
black carbon emission is increased to 6.87 Tg/yr, and the smoke emission increases to
73.39 Tg/yr. The a posteriori emissions in Indonesia in the scenario with increased
uncertainty are in better agreement with both the TOMS AI and with previous estimates
for the Indonesian fires in 1997. In the scenario where biomass smoke from large fires
are elevated by 1 km in altitude, the annual total black carbon emissions are 5.68 Tg/yr,
and the smoke emissions are 60.44 Tg/yr, almost unchanged from the a priori emissions.
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1. Introduction

[2] Biomass burning is a major source of carbonaceous
aerosols which contain light absorbing black carbon (BC) as
well as organic matter (OM) and other trace constituents.
The radiative effect of biomass smoke aerosols is important
to both the global and regional radiative budgets [Hobbs et

al., 1997; Penner et al., 1998; Podgorny et al., 2003;
Davison et al., 2004]. Accurate information on the source
strength and geographic distribution of biomass smoke
aerosols is essential to quantifying the aerosol forcing and
climatic impact of biomass aerosols. There have been
continuing efforts to improve biomass burning inventories
[Ito and Penner, 2004; van der Werf et al., 2003].
[3] Current biomass emission inventories are developed

on the basis of a bottom-up technique, which generates
biomass emissions through area burned statistics (m2), fuel
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load (g/m2) for that area, combustion fraction, and emission
factor (g BC/g or g TP/g). Uncertainties in any of these
bottom factors will propagate to the final inventory. With
about 20 years of data record, the Advanced Very High
Resolution Radiometer (AVHRR) instrument provides use-
ful information on the time series of active fires and burned
areas [Kaufman et al., 1990]. However, its instrument char-
acteristics are inferior to more recent instruments, such as the
SPOT VEGETATION instrument (GBA2000) [Grégoire et
al., 2003], the ATSR-2 instrument (GLOBSCAR) [Simon et
al., 2004], and the MODIS instrument [Roy et al., 2002;
Justice et al., 2002]. Although estimates of burned area have
improved with recent satellite remote sensing products,
estimates of biomass burned are subject to large uncertainty
[Andreae and Merlet, 2001]. For example, the variation of
estimated fuel load is about a factor of two globally, using
three different tree cover data sets [Ito and Penner, 2004].
Another uncertainty lies in emission factors where the
standard deviation of BC emission factors ranges from
70% to 100% among different fuel types [Andreae and
Merlet, 2001].
[4] An inverse model was first utilized in atmospheric

science by Enting [1993] and Enting et al. [1993] to study
the atmospheric CO2 cycle. Later, it was employed to study
the atmospheric methane cycle [Hein et al., 1997], and the
atmospheric CO cycle [Bergamaschi et al., 2000a]. The
inverse model was used to derive the CO sources by
optimizing the difference between a forward model calcu-
lation and observations. The method was extended in the
work of Bergamaschi et al. [2000b] to produce more robust
results by adding constraints to the optimization. Long-term
observed surface concentrations were used in these studies.
In order to apply this technique to biomass emissions,
regionally representative long-term observations of biomass
smoke would be needed. However, many surface observa-
tions of biomass smoke are campaign based, and hence are
inadequate for the development of an inverse model.
[5] Satellite-based measurements provide a convenient

and comprehensive method to characterize aerosol temporal
and spatial distributions. For example, satellite-retrieved
aerosol optical depth (AOD) is frequently used. AOD is
the summation of the optical depth due to all aerosol types.
Because it is very difficult to separate a specific aerosol
from the total optical depth, these measurements are not
sufficient to characterize biomass carbonaceous aerosols.
However, the global distribution of UV-absorbing aerosols
have been measured using the measured differences be-
tween two UV band radiances from the TOMS instrument
for more than 20 years, starting from November 1978. The
use of the TOMS Aerosol Index (AI) to identify absorbing
aerosols such as carbonaceous aerosols, mineral dust and
ash aerosols from volcanic eruptions was described by
Herman et al. [1997], Hsu et al. [1999], and Ginoux et al.
[2001]. The TOMS AI detects UV-absorbing aerosols and is
less sensitive to pure scattering aerosols, such as sea salt and
sulfate aerosols. As a result, the use of the TOMS AI allows
a more accurate comparison for absorbing aerosols, such as
elevated (at least 2km above the surface) biomass carbona-
ceous aerosols.
[6] In some biomass burning regions, such as the Sahel,

biomass smoke is mixed with dust aerosols; therefore dust
emissions must be included in the simulation to match the

TOMS AI. Therefore we have combined the results from a
chemical transport model and a radiative transport model to
simulate the AI for a fixed set of a priori biomass and dust
emissions. Once the AI is obtained from the model, an
inverse model is used to optimize the difference between
satellite measurements and model results by adjusting the
biomass source strengths. In this study, we apply the inverse
model for the year 1997. The year 1997 is particularly
interesting because drought conditions associated with the
strong El Niño event triggered widespread increases in fire
activity. There have been several studies focusing on the
global biomass emissions and biomass emissions in Indo-
nesia for this year using the bottom up approach [Duncan et
al., 2003a, 2003b; Levine, 1999; Page et al., 2002; Davison
et al., 2004] and inverse modeling technique [van der Werf
et al., 2004], which showed considerable variations in their
estimates. The inverse model provides a novel way to study
biomass emissions in 1997, although the same model can be
applied to other years as well.
[7] We will first introduce our chemical transport model,

followed by the radiative transfer model and the method to
simulate AI combining the transport model and the radiative
transfer model. Then the inverse model is employed to
obtain better biomass inventories using the modeled AI and
the TOMS AI. Finally we will discuss the results of the
inverse model in light of several sensitivity studies.

2. Model Description

[8] The development of an inverse model for biomass
emissions requires calculating the modeled AI which
involves several models as illustrated in Figure 1. The
components of Figure 1 will be described in the following
subsections. The Bayesian inverse technique will be
described subsequently.

2.1. Transport Model

[9] The IMPACT model is an Eulerian model of trans-
port, transformation and removal, whose spatial resolution
in this study is 2� latitude by 2.5� longitude. The vertical
resolution for this study is 46 sigma levels up to 10 mb. In
order to simulate the real atmosphere corresponding to the
TOMS measurements period, the IMPACT model is driven
by the Data Assimilation Office (DAO) Geostationary
Operational Environmental Satellite (GEOS) meteorology
data for the same time period. Here the meteorology data for
the year 1997 are employed.
[10] The IMPACT model is coded to make use of mas-

sively parallel computing. The flux form semi-Lagrangian
advection scheme is that developed by Lin and Rood [1996].
The parameterization by Balkanski et al. [1993] is employed
for wet scavenging in the convective updrafts, while the first-
order rainout parameterization by Giorgi and Chameides
[1986] is used for the large-scale precipitation and precipi-
tation in convective anvils. The fraction of aerosol species
scavenged in the convective updrafts is:

f ¼ 1� e�aDz ð1Þ

where a represents the scavenging efficiency, which is
assumed to be 5 � 10�4 m�1 over continents, correspond-
ing to a typical updraft velocity of 10 m s�1 [Liu et al.,
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2001]. This formulation allows more complete removal for
deep convection and partial removal for shallow convection.
Washout below the rain is computed by assuming that the
loss rate normalized to precipitation is 0.1 mm�1, a typical
value derived by Dana and Hales [1976]. Reevaporation is
taken into account as well. It is assumed that an arbitrary
fraction of 50% of soluble species is released back to the
grid box when evaporation occurs.
[11] The dry deposition scheme for aerosols in the

IMPACT model follows the work by Zhang et al. [2001].
This scheme is a resistance in series scheme loosely based on
the work of Slinn [1982], taking into account the effect of
Brownian diffusion, impaction, interception, and rebound.
[12] The input species for the IMPACT model include

biomass black carbon, biomass organic carbon and dust
sources. A wide range of factors can influence dust mobi-
lization, including soil moisture, surface conditions and
wind velocity. Dust emissions were those generated in the
work by Ginoux et al. [2001] as a function of wind speed at
10 meters and the threshold velocity. The emissions in 1997
are used in this work, covering 11 months from January to
November. Since dust particles with large radius are not
important in long-range transport due to gravitational set-
tling, the current dust emissions are limited to particles with
size ranging from 0.1 to 6 mm. The total dust source strength
for the 11 months in the year 1997 is estimated to be 261 Tg
for submicron dust particles and 1120 Tg for supermicron
dust particles.

2.2. Methodology for Calculating the AI

[13] This section first describes how the TOMS AI is
calculated on the basis of measured radiances, and then
explains the methodology for computing modeled AI.
2.2.1. TOMS AI
[14] The Nimbus 7 TOMS operated from November 1978

to May 1993. After that, Meteor 3 TOMS started data
acquisition in August 1991 and continued through Decem-

ber 1994. For these two instruments, the version 7 TOMS
AI was determined for the 340- and 380-nm wavelength
channels. No TOMS aerosol data were available from
January 1995 to July 1996 until the launch of Earth Probe
(EP) TOMS and Advanced Earth Observing Satellite
(ADEOS) TOMS. These two instruments do not contain
the 340- and 380-nm channel. Instead, the TOMS AI is
calculated using the 331- and 360-nm channels. In the
recently released version 8 TOMS data, the AI uses 331
and 360 nm for all sensors. Since this study was carried out
before the version 8 TOMS data was released, the version 7
TOMS AI was used instead. However, future analysis will
utilize the version 8 TOMS data.
[15] There is an advantage to using the more recent TOMS

AI data due to the availability of meteorology data from the
DAO and dust emissions. Satellite monitored burned area is
available for more recent years, allowing cross comparison
between the results of the inverse model and other biomass
inventories based on burned area from satellite products,
for example, those derived by Ito and Penner [2004].
Because of the loss of ADEOS in June 1997, the TOMS
AI used here in this work is the EP TOMS in 1997.
[16] The EP TOMS AI is defined by Herman et al. [1997]

as:

AI ¼ �100 log10 I331ð Þmeas= I331ð Þcalc
� �

ð2Þ

where (I331)calc and (I331)meas are calculated and measured
radiances at 331 nm, respectively. (I331)calc is determined by
requiring that the Lambertian albedo R in a pure Rayleigh
scattering atmosphere at 360 nm be equal to the measure-
ments, hence (I360)meas = (I360)calc. It should be noted that
most surfaces have an albedo that varies with the solar
zenith angle so that they are rarely truly Lambertian (the
luminance of the surface is the same regardless of the
viewing angle). Data containing highly non-Lambertian
surfaces, e.g., sea glint and snow/ice, were therefore edited
out of our analysis.

Figure 1. Components of the modeled AI. Besides biomass emissions, dust emissions are included in
the calculation of the modeled AI in order to correctly simulate the AI in those regions with both dust and
smoke aerosols. However, dust emissions are not optimized by the inverse model and therefore are not
plotted here.
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[17] From equation (2), AI can be expressed as:

AI ¼ �100flog10 I331=I360ð Þmeas
� �

� log10 I331=I360ð Þcalc
� �

g ð3Þ

where Imeas is the measured backscattered radiance at a
given wavelength and Icalc is the radiance calculated at the
wavelength in a pure Rayleigh scattering atmosphere.
Absorbing aerosols, i.e., elevated (at least 2km above the
surface) carbonaceous aerosols and mineral dust particles
tend to decrease the radiance contrast of the pure Rayleigh
background, causing a positive AI. Pure scattering aerosols
and clouds, on the other hand, slightly increase the radiance
contrast, resulting in nearly zero or a small negative AI.
Absorbing aerosols and pure scattering aerosols can be
discriminated through the different signs of the AI. When
absorbing aerosols and clouds coexist, the AI value can
increase or decrease depending on the relative location of
the aerosol layer in relation to the cloud, and the level of
subpixel cloud contamination. The effect of clouds is
discussed in section 5.5.
2.2.2. Modeled AI
[18] The modeled AI is calculated on the basis of mod-

eled backscattered radiances, unlike the TOMS AI, which
was calculated on the basis of satellite retrieved backscat-
tered radiances. The modeled AI is defined as:

AI ¼ �100flog10 I331=I360ð Þmodel
� �

� log10 I331=I360ð Þcalc
� �

g ð4Þ

(I331/I360)model is the ratio of modeled backscattered
radiance at 331 nm to that at 360 nm with aerosols in a
Rayleigh scattering background. (I331/I360)calc is the ratio of
modeled backscattered radiances at 331 nm to that at
360 nm in a pure Rayleigh scattering atmosphere. The
modeled radiance is a function of albedo R and atmospheric
absorption and scattering, where R is obtained by requiring
(I360)model = (I360)calc.
[19] To calculate the modeled AI, we need to know the

effect of aerosols on the UV radiance, specifically, the back-
scattered radiance at the top of atmosphere for the wave-
lengths 331 and 360 nm. The radiative transfer model used
here is a modified version of the code developed by Herman
and Browning [1965]. It includes the effects of multiple
scattering and polarization. The higher-order scattering is
assumed to take place in a plane parallel atmosphere. The
radiance of a pure Rayleigh scattering atmosphere is provided
by a look-up table. The Rayleigh optical depth at 331 nm and
360 nm is same as that used in the TOMS total ozone retrieval
[McPeters et al., 1998]. A typical tropical ozone profile with
total ozone column of 325 DU [McPeters et al., 1998] is
assumed in the model, resulting in an optical depth of about
0.05 at 331 nm. Ozone absorption is very small at 360 nm
(<10�8 atm-cm�1) therefore is neglected in the calculation.
The uncertainties in the modeled AI due to the ozone
abundance and vertical profile are small, less than 0.5%
[Colarco et al., 2002].
[20] The surface reflectivities at 331 and 360 nm are

based on the monthly Lambert Equivalent Reflectivity
(LER) of the Earth’s surface at 380 nm that was developed
by Herman and Celarier [1997] using Nimbus 7 TOMS
measurements. As indicated in the same work, the differ-
ence of the LER at 340 nm and 380 nm is less than 0.2%.

The surface reflectivity at 360 nm is assumed to be equal to
that at 380 nm. Additionally, it is assumed that the surface
reflectivity at 331 nm is equal to that at 380 nm. Compared
to the reflectivity at visible wavelengths, the land surface
reflectivity in the UV range is significantly lower than in the
visible and exhibits low spatial variability. Typical values of
UV surface reflectivity are about 0.03 for vegetation cov-
ered land, and 0.05 to 0.10 for ocean surface. The sensitivity
study for biomass smoke aerosols indicates that the absorb-
ing aerosol index is weakly dependent on the surface
reflectivity for the regions of interest in this analysis since
this analysis is limited to the tropical regions where the UV
reflectivity of the surface is always lower than 10%, even
for deserts [Torres et al., 1998].
[21] The local passing time is around 11:20 am through-

out the operation time of the EP TOMS instrument.
Accordingly, the solar zenith angle in the model is calculated
for 11:20 am. The computed AI varies by less than 5% for a
difference of 20 degrees in solar zenith angle (not shown
here). The satellite viewing angle is assumed to be 0 degrees,
the same as that used in the work of Torres et al. [1998].
Since computing the AI on a pixel basis is very time
consuming for the inverse modeling application, the TOMS
level 3 data are used and the viewing angle is assumed to be
nadir in this analysis. The EP TOMS instrument scans
perpendicular to the orbital plane from 51 degrees on the
left side of the nadir to the 51 degrees on the right. The
difference of the modeled AI between a nadir view and that
calculated at 40� is about 18% for biomass smoke aerosols.
[22] Previous studies indicate that the AI is sensitive to

the aerosol vertical distribution, and it cannot easily detect
carbonaceous aerosols near the ground [Herman et al.,
1997; Torres et al., 1998; Hsu et al., 1999]. The large
sensitivity of AI to aerosol height suggests that an inaccu-
rate representation of the aerosol vertical distribution in the
transport model may be one of the most important factors
contributing to uncertainties in the AI calculation and the
inverse model. Not surprisingly, the AI-AOD slope also
increases with the aerosol height.
[23] The aerosol size distribution and refractive index

used in this study are listed in Table 1 except for biomass
smoke aerosol whose refractive index is computed on the
basis of the BC and OM volume fraction at each grid point,
and therefore is different from the value listed in Table 1.
The refractive index for BC is 1.75–0.46i [Koepke et al.,
1997] at 331nm and 360 nm, while the refractive index for
OM is assumed to be 1.53–0.0i at these two wavelengths.
The work by Radke et al. [1988] indicated that biomass
smoke aerosols showed little variation in smoke aerosol size
from fire to fire or during a fire while near the source. The
geometric mean radius for biomass is usually around 0.1 mm
[Radke et al., 1988; Anderson et al., 1996; Remer et al.,
1998]. We assume that the geometric mean radius of dry
biomass smoke is 0.077 mm, consistent with the radius of
the accumulation mode measured during the TRACE-A
experiment [Anderson et al., 1996] and the SCAR-B
experiment [Ross et al., 1998; Remer et al., 1998]. Figure 2
shows the relationship between the modeled AI and single
scattering albedo and the assumed aerosol geometric mean
radius for smoke aerosols with an optical depth equal to 1 at
360 nm. For Figure 2, the aerosol vertical distribution is
assumed to be a Gaussian distribution with a mean altitude
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of 3 km and s equal to 1.5 km. The refractive indices are
those listed in Table 1. The refractive index for biomass
smoke is that observed during the SAFARI 2000 campaign
[Haywood et al., 2003]. The modeled AI is anticorrelated
with the single scattering albedo. The modeled AI reaches
its minimum while the single scattering albedo reaches its
maximum when the geometric mean radius is approximately
0.1 mm. Since the modeled AI is not very sensitive to
variations in the geometric mean radius between 0.02 and
0.1 mm, the uncertainty associated with the assumed size
distribution of biomass smoke aerosol is relatively small for
the size range of interest.
[24] The dust size distribution is that measured during the

ACE 2 experiment near Tenerife, Canary Island [de Reus et
al., 2000]. However, only the accumulation mode and coarse
mode are used here because the cross section of the Aitken
mode particles is small and hence unimportant in the radiative
transfer calculation. Omitting the Aitken mode only results in
a small difference (1%) in themodeled AI. The dust refractive
index was obtained by fitting the slope of the AI and AOD
relationship with observations at the AERONET sites
[Colarco et al., 2002]. Colarco et al. [2002] inferred the dust
refractive index using three different size distributions in-
cluding the one we used here [de Reus et al., 2000]. We
assume an imaginary component of the refractive index that
was 20% larger than the value at 360 nm used by Colarco et
al. [2002]. Colarco et al. [2002] found that the inferred
imaginary component of the dust refractive index is much
smaller than the previous value used in the TOMS retrieval
[Torres et al., 2002]. The retrieved dust refractive index at
AERONET sites [Dubovik et al., 2002] and that by Sinyuk et
al. [2003] also suggests that dust aerosols are less absorbing
than previously thought [Patterson et al., 1977]. The
refractive indices given by Dubovik et al. [2002] and
by Sinyuk et al. [2003] are very similar to what we used
here. The uncertainty of the real component of the
refractive index contributes less than 5% difference in
the modeled AI. The uncertainty in the inverse model
introduced by the dust refractive index can be minimized
by carefully removing data points with large dust con-
tamination. The dusty regions are identified by calculating
the ratio between the optical depth of dust and biomass
smoke. When the ratio is greater than 1, that region is
assumed to have large dust contamination, and is not
included in this analysis.
[25] The AI is calculated from the modeled concentra-

tions of smoke and dust at each grid box with the aerosol
vertical distribution taken from the transport model. Since
the radiative transfer calculation is very time consuming,
the software Parallel Virtual Machine (PVM) is employed
to distribute the calculation on multiple workstations.
Although the overall performance depends on the number
of workstations and the load on each node, the wall clock

time needed to run the simulation is reduced tremendously
because of low internode communication.
[26] The modeled AI used in the inverse model is

computed on the basis of monthly average aerosol concen-
trations in order to reduce computation time. This may
introduce a bias, since observations took place daily. To
evaluate this bias, two simulations are carried out for
January 1997, one with the AI calculated on the basis of
the daily aerosol concentrations at noon, and the other based
on monthly mean aerosol concentrations. The monthly
average of the daily AI is calculated from the first simula-
tion and compared to the result with monthly average
aerosol concentrations. The relative difference from this
calculation is about ±5% on average with most regions
having a relative difference of less than ±10%. The overall
tendency is to underestimate the monthly average AI if the
monthly average aerosol concentration is used for the calcu-
lation, probably because of an underestimation of the aerosol
height in the monthly mean aerosol concentrations. There are
some pointswith a relative difference as large as 30% inNorth
Africa. These large differences are due to the very small AI
value (<0.2) there. In this study, we avoid using data points
withAI less than 0.4which helps to reduce the bias introduced
by the use of monthly average aerosol concentrations. There-
fore the relative error due to using monthly average aerosol
concentrations is about 5%.

Table 1. Aerosol Size Distributions and Refractive Indicesa

Aerosol Type r1, mm s1 N1 r2, mm s2 N2

Refractive Index

331 nm 360 nm

Biomass smoke 0.077 1.40 1.0 � � � � � � � � � 1.54–0.018i 1.54–0.018i

Dust 0.045 1.6 1.6 0.28 2.5 0.96 1.57–0.0048i 1.57–0.0040ii
aRefractive index for biomass smoke is the value inferred during the SAFARI 2000 campaign at 550 nm [Haywood et al.,

2003], assuming there is no wavelength dependence. Dust refractive index is from Colarco et al. [2002].

Figure 2. Relationship between the model AI and the
single scattering albedo at 360 nm and the assumed
geometric mean radius for biomass smoke aerosols. The
aerosol size distribution is assumed to be a lognormal
distribution with s equal to 1.40. The BC fraction is
assumed to be 10%. The aerosol optical depth at 360 nm is
1. The mean altitude of the aerosol layer is 3.0 km. The
surface reflectivity is 0.05.
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[27] Hsu et al. [1999] derived the slope of AOD (AOD
was referred to as aerosol optical thickness (AOT) in their
study) at 380 nm measured by Sun photometer and the EP
TOMS AI at the AERONET sites for South American and
African smoke in the years 1997 and 1998. The interannual
difference of the slope from the AOD and AI relationship in
their results was small, providing a way to check the
modeled AI for the year 1997 in this work. We calculate
AI using the aerosol vertical distribution in the transport
model. The refractive index for biomass smoke aerosols at
each site is computed on the basis of the volume fraction of
BC and OM. The size distributions for biomass smoke and
dust are those listed in Table 1. The satellite viewing angle
is assumed to be the nadir view. The slope of the 380-nm
AOD and the modeled AI is 1.20 in South America, very
close to the slope of 1.25 in the work by Hsu et al. [1999].
In Africa, the calculated AOD and AI slope is 0.62, which is
somewhat smaller than the slope of 0.77–0.84 obtained by
Hsu et al. [1999]. The difference between the model and
observations in Africa is due to the contamination of dust
particles in the model, since the observed AOD and AI
slope for dust was about 0.3–0.4 [Hsu et al., 1999]. Dust
has little impact on the results for South America because of
low dust concentrations there. The difference between the
South America and Africa in the observation and in the
model can be attributed to the difference in the BC mass
fraction and the aerosol vertical distribution. Smoke from
African fires, which largely comes from savannah burning,
has a larger BC mass fraction in our inventories, resulting in
a slightly larger imaginary component of the refractive
index for smoke aerosols in Africa. The transport model
also produces a more elevated aerosol layer in Africa,
consistent with the LIDAR measurements during the
TRACE-A experiment [Browell et al., 1996]. Both of these
two factors tend to cause a smaller AOD and AI slope than
that in South America.

2.3. Inversion Technique

[28] Here, we adopt the Bayesian inversion approach
described by Tarantola and Vallette [1982a, 1982b]. This
approach was used by Hein et al. [1997] for CH4 inversion.
Whereas Hein et al. [1997] optimized CH4 sinks by treating
them as negative sources, this approach suffers the disad-
vantage that the mixing ratio of CH4 needs to be prescribed
by the forward model since the removal process is propor-
tional to the atmospheric mixing ratios. The range of global
aerosol burdens from different models is about a factor of
2.5 for carbonaceous aerosols as demonstrated by Penner et
al. [2001]. The range of surface mixing ratios is about a
factor of 10. Prescribing aerosol mixing ratios can introduce
a large systematic error in the inverse model. Therefore
optimizing individual sinks is not included in this work.
[29] The inverse technique constitutes a least squares

optimization problem. The general form of the Bayesian
least squares is

S ¼ c� h xð Þð ÞTO�1 c� h xð Þð Þ þ x� xað ÞTB�1
a x� xað Þ ð5Þ

where S is the least squares cost function which we try to
minimize, and c and h(x) are vectors representing the
observations and model results at a series of grid points,
respectively. The superscript T represents the transpose

operator of a vector or matrix. x are the derived emissions,
and xa are the a priori emissions. O and Ba are the
covariance matrix for the observations and a priori
emissions, respectively. The covariance matrix is composed
in such a way that the diagonal elements are the variances of
the observations at a single point or the a priori emissions
for a single region, and the off-diagonal elements give the
covariances between two locations or two emissions,
calculated as:

cov xi; xj
� �

¼ 1

n� 1

Xn

k¼1

xi;k � xi
� �

xj;k � xj
� �

ð6Þ

where xi and xj represent the observations or a priori
emissions at two locations, i and j, respectively, xi and xj are
the means of xi and xj, respectively, and k is the index over
which the mean is calculated.
[30] Since most transport processes in the model and the

AOD are approximately linear in the aerosol mixing ratios,
a linear relationship between the modeled AI and AOD
ensures that the modeled AI can be expressed as a linear
combination of the model solution for each individual
biomass smoke emission, in our case, biomass smoke
emission in a specified region. Therefore

h xð Þ ¼ Tx ð7Þ

where T is the model response matrix to biomass burning
emissions in a specific region, h(x) is the modeled AI for a
set of emissions x. Given the source strength x, equation (7)
can be used to estimate the AI directly.
[31] The formal solution to equations (5) and (7) is

x ¼ xa þ BTTO�1 c� h xað Þð Þ ð8Þ

B ¼ TTO�1Tþ B�1
a

� ��1 ð9Þ

[32] If the further assumption is made that the uncertainty
of the observations and emissions are independent of each
other, O and Ba are each diagonal, with diagonal elements
equal to the variances (s2) of observations and the a priori
emissions, respectively.
[33] There are two terms in equation (5). The first term is

the weighted least squares difference of the observation and
the model data; the second term is the weighted least
squares difference of the a priori and the a posteriori
emissions. The use of the linear estimation, equation (7),
and equation (5) allows the systematic propagation of the
uncertainty in the data to the uncertainty of the a posteriori
emissions (equation (8)). If the observation indeed provides
constraints to the a posteriori emissions, the uncertainties of
the a priori emissions will be reduced. Otherwise, the
uncertainties of the a posteriori emissions will remain
unchanged from the a priori uncertainties. The use of prior
estimates in equation (5) is necessary, since without such
information, the solutions may be unstable [Denning, 1994].
If the observational error is much smaller than that of the a
priori emissions, the solution will force the model to match
the observations. On the other hand, if the observational
error is large compared to the a priori emissions, then the a
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posteriori emissions are close to the a priori emissions. The
uncertainties of the observations and the a priori emissions
are discussed in sections 4 and 3, respectively.
[34] Since aerosols have a lifetime of about a week in the

model, the impact of perturbing emissions in prior months is
neglected in this work. The inverse model is carried out for
each month separately. This approach can be improved by
adding the model response matrix T0 to the biomass burning
emissions in the previous month to equation (7). Thus
equation (7) becomes:

h x; x0ð Þ ¼ Txþ T0x0 ð10Þ

where x0 is the vector representing the biomass burning
emissions for the previous month. In the future, we plan to
examine the effects of including emissions from the
previous month.

3. Biomass Smoke Emissions

[35] The a priori biomass smoke emissions used here
were constructed by Liousse et al. [1996]. The annual
emission strengths were 59.9 Tg smoke and 5.63 Tg BC,
including savannah, forest, agriculture, and domestic fires.
In their biomass burning inventory, fires from temperate and
boreal regions were not included. The forest and savannah
fires followed the work of Hao et al. [1990] with updated
emission factors, resulting in annual emissions of 2.17 and
1.93 Tg BC/yr for savannahs and tropical forests. Domestic
fires and agriculture fires were constructed in the study by
Liousse et al. [1996] through an exhaustive literature
survey. The annual emissions for domestic fires and agri-
culture fires were 0.53 and 1. Tg BC/yr, respectively.
[36] Dividing the current biomass emissions into subca-

tegories according to the type of biomass burned is straight-
forward. However, optimizing the biomass smoke emissions
on the basis of the type of biomass will not be able to reduce
the uncertainty of emissions that are allocated by geographic
regions. For example, the relative emission strength of forest
burning in Indonesia and South America might not be
accurate in the a priori inventory. Optimizing the biomass
emissions from forested areas, which are present in both

SouthAmerica and Indonesia, would fail to catch the regional
ratio of emissions. Dividing biomass burning emissions
according to their geographic locations has been used in
previous studies [Duncan et al., 2003b; Galanter et al.,
2000;Arellano et al., 2004]. In this study, the a priori biomass
emissions are partitioned according to geographical regions
as well. First, the map is divided into seven geographical
regions. Then emissions are portioned according to their
locations. These separate regions are then used in the
calculation of burden and the TOMS AI from the
different regions. The source in each region is optimized
individually.
[37] It is assumed that the biomass burning in different

regions is not correlated with the emissions in other regions
and that their uncertainties are independent of the observa-
tions. In order to achieve independence between the indi-
vidual source regions, fairly large regions are used, avoiding
partitioning of areas with similar burning patterns. Unfor-
tunately, since forest and savannah burning in the tropics is
closely associated with the dry season, burning in different
regions are potentially correlated. Additionally, the uncer-
tainty of biomass emissions in a region is associated with
the uncertainty of emission factors which are applied
uniformly for the same vegetation type despite different
regions. This undermines the assumption of the independent
uncertainty of biomass emissions in each region. Daily
emissions are needed in order to calculate the covariance
in a particular month between the emissions in two sub-
regions. Since there is not enough information provided to
calculate this covariance, the covariance of the a priori
emissions in different regions is simply set to zero, leaving
the covariance matrix Ba in equation (5) diagonal.
[38] The independence of observations and a priori emis-

sions is also difficult to establish, since current biomass
emissions may implicitly or explicitly utilize information
based on observations. However, the a priori emissions used
here do not take into account any information collected
through the TOMS AI products. Therefore the indepen-
dence between a priori emissions and observations is a valid
assumption. If this assumption were not true, the uncertain-
ties of the a priori emissions would be underestimated.
[39] The potential weakness of dividing the sources into

large regions is that geographic variations within each
region are not subject to optimization. However, this is a
trade off needed to gain independence between a priori
sources. Figure 3 plots the 6 major source regions for
biomass burning that are used here. They are (1) the Sahel
(including equatorial Africa), (2) southern Africa, (3) South
America, (4) Southeast Asia, (5) Indonesia, and (6) Aus-
tralia. Then whatever is left in the emissions which are not
included in the first defined six regions is categorized as the
rest of the world (region 7). The temperate and boreal
regions are not included, but India is included in the a
priori emissions. This means the emissions in the temperate
and boreal regions where TOMS is uncertain are not
adjusted in this study. India is an important biomass
emission region where burning (except domestic fires)
occurs from January to May. However, there is a substantial
amount of dust aerosols during this period, making optimi-
zation of biomass smoke emissions more difficult. In a
preliminary simulation, optimization including biomass
emissions in India resulted in negative a posteriori emis-

Figure 3. Biomass burning regions considered in the
inverse model. The regions refer to Sahel (region 1),
southern Africa (region 2), South America (region 3),
Southeast Asia (region 4), Indonesia (region 5), Australia
(region 6), and the rest of the world (unshaded regions,
region 7).
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sions in India in the major biomass burning months (March,
April, and May). Dust contributes a large fraction (about
50% or more) to the combined optical depth for dust and
biomass smoke. The inverse model fails because it only
adjusts the biomass emissions in India whereas the discrep-
ancy between the observed and modeled AI comes from
both dust and biomass smoke. Optimizing dust emissions is
beyond the scope of the present study, so that biomass
emissions in most parts of India are excluded from the
optimization. The small region near the Bay of Bengal is
included as part of the Southeast Asia region. The first six
major source regions contribute about 67% of the total
biomass smoke a priori emissions.
[40] The uncertainties associated with the a priori biomass

burning emissions were not estimated by Liousse et al.
[1996]. Biomass black carbon emissions range from 5.6 to 9
in different studies [Liousse et al., 1996; Cooke and Wilson,
1996; Scholes and Andreae, 2000]. The reported biomass
burned in the tropics ranges from 3260 to 10450 Tg/yr
[Seiler and Crutzen, 1980; Crutzen and Andreae, 1990;
Andreae, 1991; Hao and Liu, 1994; Galanter et al., 2000].
The actual range of uncertainty may encompass both larger
and smaller values. Here, we assume that the uncertainty of
biomass burning emissions is a factor of 2 and that this
uncertainty represents a 95% (2s) confidence interval. For
the base scenario, we assume that the standard deviation of
each individual biomass source in regions 1, 2, 3, 4, and 6 is
50% of the a priori source, while in Indonesia (region 5) the
standard deviation is assumed to be 200% of its source,
because of the large fires in that region in 1997 [Page et al.,
2002]. The biomass emissions in the rest of the world
(region 7) are fixed in the base case, and hence have a
standard deviation of 0. The assumption that the biomass
emissions in the five regions have a uniform relative
standard deviation is a simplification since in reality the
uncertainties of biomass emissions vary in different regions.
For example, the areas associated with savannah and forest
burning in Africa are uncertain to a factor of 2 [Lacaux et
al., 1995]. The biomass burning in South America is
uncertain by a factor of 2.5 [Ito and Penner, 2004]. Under-
estimating the uncertainty of a priori biomass emissions
tends to undermine the model capability to further reduce
the uncertainties through optimization. This issue will be
discussed in section 5.2.

4. Observed TOMS AI

[41] The TOMS satellite observations are used in the
inverse model. The advantage of using remote sensing data
compared to in situ point observations is that remote sensing
data represent grid average values better than do point
observations, thereby causing less error due to the spatial
mismatch between the model and observations. On the other
hand, satellite remote sensing data have the disadvantage of
instrument error, information loss due to the inversion
algorithm used to infer the observation from radiances,
and cloud contamination. Another uncertainty of satellite
remote sensing data comes from the ‘‘space-filling’’ algo-
rithm used to fill a grid area without 100% coverage by the
satellite.
[42] The monthly average AI is calculated on the basis of

the daily Level 3 EP TOMS AI with a resolution of 1 �

1.25 degrees. The use of the TOMS Level 3 data provides
better agreement with the spatial resolution of the transport
model (2 � 2.5 degrees), although the information from the
viewing angle is lost. In order to compare to the observa-
tions, the 1 � 1.25 degree TOMS AI data are interpolated to
the 2 � 2.5 degree resolution of the model. These data are
then used to compute the monthly mean, daily standard
deviation and covariance between two locations. A cloud
screening criteria (discussed below) is used in the calcula-
tion in order to reduce cloud contamination. The standard
deviation and covariance of the observational data are
calculated from the available daily TOMS data and their
corresponding monthly mean value.
[43] In the base case, the covariance between two

locations is neglected. Therefore the covariance matrix is
diagonal with only the variance of each location as
the diagonal elements. When off-diagonal elements are
included in the matrix, the situation is more complicated.
The results without omitting off-diagonal covariances are
discussed in section 5.6.
[44] Another important factor which affects our inver-

sions is the cloud screening method. The monthly mean
TOMS AI in each month from January to December without
cloud screening is plotted in Figure 4. Using a reflectivity of
40% to eliminate cloud contamination leads to similar
results (not shown here). However, the monthly mean
TOMS AI is notably smaller if a stricter cloud screening
(lower reflectivity) criteria is used (not shown). There are
two possible reasons for this. First, high-aerosol events
increase the reflectivity, which would therefore be eliminated
by using the low-reflectivity criteria. Second, clouds can
increase the AI if absorbing aerosols are located above them
(see Figure 11). For the base scenario, we apply a cloud
screening criteria using a reflectivity of 40%. The effects of
clouds will be discussed in detail in section 5.5.
[45] The seasonality of biomass burning is visible in the

monthly TOMS AI plot (Figure 4). Biomass burning in the
Sahel occurs during the winter months. The biomass burn-
ing season in South East Asia peaks in March and April
with weaker burning in February. Biomass burning in
southern Africa starts in June and intensifies in the follow-
ing months, reaching its peak in July and August. Biomass
burning in South America starts later than in southern
Africa. There are smoke signals in August, September,
October and November. The widespread fires in Indonesia
during 1997 due to the dry conditions driven by an El Niño
event has a strong signal from August through November in
the EP TOMS AI plot. There is no representation of this fire
in the current biomass burning emissions. However, we do
have prior ground-based knowledge of the Indonesia fires.
Hence the standard deviation is assumed to be 200% of the
source. The emissions in Indonesia provide a test to
evaluate how the inverse model performs with poor a priori
information.
[46] Since the TOMS AI cannot discriminate between

dust and biomass smoke aerosols, special attention must be
paid to those regions where aerosols are a mixture of dust
and biomass smoke. Including those data points with large
dust concentrations tends to degrade the a posteriori emis-
sions since the inverse model is only allowed to adjust the a
priori biomass emissions although part of the discrepancy
between the TOMS AI and the modeled AI may come from
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Figure 4. Monthly average of the EP TOMS AI in the year 1997. No cloud screening is applied to the
daily TOMS AI.
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the dust emissions. Two such regions are the Sahel and
India. On the basis of the work reported by Penner et al.
[2002], models suggest that the optical depth due to biomass
smoke is about half of the total AOD during the burning
season of January, February and March in the Sahelian
region. Including data points south of 10�N in the inverse
model produces reasonable a posteriori emissions. The
modeled AI based on the a posteriori emissions is in the
range of the observed AI. This probably indicates that dust
aerosols are relatively well characterized, or that spatial
patterns of biomass aerosols are well represented in this
region. In India, biomass smoke contributes about half of
the total AOD in January, February and March, but only one
third in April. The modeled AI in March and April suggests
that Northern India is largely affected by dust arriving from
the west [see Herman et al., 1997, Figure 13]. Including the
Northern India region in the inverse model results in a
negative source strength in India. Therefore only data points
in East India near the Bay of Bengal are included in the
inverse model.
[47] There are large regions where the AI value is small

(AI � 0.4), or the signal is due to dust aerosols. These

regions should not be included in the inverse model, and
hence are not included in the inversion procedure. In
addition, TOMS AI in middle and high latitudes is not
included in the inversion to avoid the data quality issues for
TOMS when measurements were taken at large solar zenith
angles [Herman et al., 1997; Hsu et al., 1999]. Figure 5
plots the preselected regions used here for inverse modeling.
These regions contain most of the areas where there are
biomass smoke signals in the TOMS AI plots and neglect
those regions where signals are mainly due to dust aerosols.
The AI signal in November and December over the south-
ern Pacific between 10S to 20S is probably due to eastward
transport of biomass smoke originating from Indonesia.
Since no inversion is performed for biomass burning
emissions in December, omitting these points probably will
only affect the results for November.

5. Results and Discussion

[48] The six scenarios involved in the base calculation
and sensitivity studies and their results are summarized in
Table 2. Scenario SC1 represents the base scenario which
was explained in sections 3 and 4. Scenario SC2 evaluates
the effect of the a priori uncertainty on the a posteriori
emissions. In scenario SC3, the calculated biomass aerosol
concentrations from forest and savannah in SC1 are elevated
by 1 km, in order to test the effect of uncertainties in the
aerosol vertical distribution. Scenario SC4 allows optimizing
the biomass emissions in the rest of the world (region 7 in
Figure 3). Scenario SC5 uses stricter cloud screening criteria
where the monthly average TOMS AI and its standard
deviation are calculated on the basis of data points with
reflectivity less than 15%. All the first five scenarios only
include diagonal elements in the covariance matrix, while in
the last scenario SC6, off-diagonal elements are also
included.
[49] In all the scenarios the BC/OM ratio is kept

constant before and after optimization because of the fact
that the AI is not sensitive to the pure scattering OM
content in the smoke particles. The uncertainties associ-

Figure 5. Preselected regions used in the inverse model.
Further selections, i.e., that the observed AI > 0.4 and that
the reflectivity <0.4, are applied to these regions to generate
the final set used in the inverse model.

Table 2. List of Scenarios Used in This Work and Resulting a Posteriori Emissionsa

SC1 SC2 SC3 SC4 SC5 SC6

A priori emission L96 L96 L96 L96 L96 L96
A priori stdv,b % 50% 100% 50% 50% 50% 50%
Optimizing region 7 no no no yes no no
Elevated aerosol, km 0 0 1 0 0 0
Cloud screening (Rc) 40% 40% 40% 40% 15% 40%
Include covariance no no no no no yes

Black Carbon Emissions
A Priori

Total 5.58 6.31 6.87 5.68 6.07 5.88 6.37
NH 2.96 3.26 3.43 3.13 3.01 3.15 3.25
SH 2.62 3.05 3.45 2.55 3.06 2.72 3.12

Total Smoke Emissions
Total 59.31 67.27 73.39 60.44 64.65 62.54 67.90
NH 31.72 34.94 36.77 33.51 32.25 33.75 34.88
SH 27.60 32.34 36.64 26.90 32.40 28.79 33.02
aEmissions are in Tg/yr. A priori emission L96 represents the biomass emissions from Liousse et al. [1996]. The annual

emissions are for twelve months although the emission in December is unchanged because the inverse model is only applied
from January to November 1997.

bThe a priori standard deviation values listed here are for monthly emissions in the six regions other than Indonesia, where
the a priori standard deviation is assumed to be 200% for SC1, SC3, SC4, and SC5, and 300% for SC2.

cR is the critical reflectivity used to select ‘‘cloud-free’’ data points when the monthly mean AI is calculated.
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ated with the annual total emission for the a priori and a
posteriori emissions are not listed in Table 2. Instead, we
only list the uncertainties associated with the monthly a
priori emissions in each region. The uncertainty of the
total annual emissions can be deduced from the monthly
uncertainty in each region, assuming that the uncertainty
associated with each monthly source is independent of the
other monthly sources. The deduced uncertainty associated
with the a priori total annual emissions is about 6%, which
appears to be too low because of the assumption of
independent monthly uncertainties in each region. There-
fore we do not discuss the uncertainty associated with
the annual total emissions. Instead, the uncertainties in
the monthly emissions are discussed separately in the
following subsections.
[50] The uncertainties associated with the a posteriori

emissions and the breakdown of the a posteriori source
strengths in each region will be discussed in the following
subsections. The results are summarized in Table 3. The
uncertainties associated with the annual emission in
each region are calculated from the monthly uncertainties,
assuming they are independent of each other. As mentioned
in section 3, this assumption may not be true. However,
the values listed here give a general idea of how the
uncertainties are changed before and after inverse modeling
for the different scenarios. The assumption of independent
monthly uncertainties does not change the relative magni-
tude of the a posteriori emissions in the different scenarios.
The monthly uncertainties are given in the following
subsections.
[51] The results of the base case are presented first,

followed by the sensitivity scenarios. Previous studies using
an inverse model indicate that results are also sensitive to
the wind fields used [Hein et al., 1997; Bergamaschi et al.,
2000a]. Since the observations in these studies are multi-
year averages, these authors applied wind fields for differ-
ent years in a sensitivity study. In this work, because the
observational data are for a particular year (1997), clima-
tological wind fields from a GCM or a year other than 1997
may not be appropriate for inverse modeling, although it
would be interesting to see whether the use of the wind
fields from a GCM would degrade the inverse modeling
results. Such a study could be carried out if additional
wind fields such as the NCEP fields for the year 1997
were available.

[52] A measure of the closeness of fit of the modeled AI
and the observation is provided by the c2 statistic which is
defined as:

c2 ¼ c� h xð Þð ÞTO�1 c� h xð Þð Þ
n

ð11Þ

where n is the total number of grid points involved in the
inverse model. Higher c2 indicates a larger deviation
between the observations and the model results.

5.1. SC1

[53] The annual total average and regional a priori and
a posteriori emissions are listed in Tables 2 and 3, respec-
tively. Table 2 also lists the sensitivity scenarios examined
here. The monthly emissions and their uncertainty for the
base case, SC1, are plotted in Figure 6. The breakdown of
monthly emissions in the first six regions for SC1 is plotted
in Figure 7.
[54] The a posteriori annual biomass black carbon emis-

sion source strength in the base case is 6.31 Tg/yr, which
corresponds to an increase of 13% compared to the a priori
annual emissions. The a posteriori monthly emissions are
still in the uncertainty range of the a priori emissions. The
total source strength uncertainty is calculated from the
uncertainties associated with the emissions in each region,
assuming independent regional uncertainties. The a poste-
riori uncertainties associated with the monthly emissions in

Table 3. Summary of a Priori and a Posteriori Emissions in Tg/yr and Their Uncertainties (1s) in Regions 1–7 of Figure 5a

BC, Tg Sahel S. Africa S. America Indonesia SE Asia Australia Rest

a priorib 1.00 ± 0.19 0.65 ± 0.14 1.17 ± 0.24 0.22 ± 0.14 0.38 ± 0.06 0.33 ± 0.08 1.84
a prioric 1.00 ± 0.38 0.65 ± 0.28 1.17 ± 0.47 0.22 ± 0.21 0.38 ± 0.13 0.33 ± 0.15 1.84
a priorid 1.00 ± 0.19 0.65 ± 0.14 1.17 ± 0.24 0.22 ± 0.14 0.38 ± 0.06 0.33 ± 0.08 1.84 ± 0.28
SC1 1.20 ± 0.12 0.68 ± 0.04 1.27 ± 0.13 0.65 ± 0.52 0.38 ± 0.05 0.28 ± 0.06 1.84
SC2 1.32 ± 0.24 0.70 ± 0.09 1.44 ± 0.22 0.91 ± 0.95 0.40 ± 0.11 0.26 ± 0.10 1.84
SC3 1.16 ± 0.12 0.62 ± 0.04 1.07 ± 0.13 0.34 ± 0.22 0.37 ± 0.06 0.26 ± 0.06 1.84
SC4 1.22 ± 0.12 0.68 ± 0.04 1.28 ± 0.14 0.65 ± 0.52 0.40 ± 0.06 0.28 ± 0.06 1.56 ± 0.22
SC5 1.12 ± 0.12 0.61 ± 0.04 1.07 ± 0.13 0.58 ± 0.44 0.38 ± 0.06 0.28 ± 0.06 1.84
SC6 1.12 ± 0.13 0.56 ± 0.05 1.43 ± 0.17 0.66 ± 0.63 0.39 ± 0.07 0.31 ± 0.07 1.84

aThe uncertainties are calculated assuming independent monthly uncertainties.
bThe a priori standard deviation values listed here are for Scenario SC1, SC3, SC4, SC6.
cThe a priori standard deviation values listed here are for Scenario SC2 only.
dThe a priori standard deviation values listed here are for Scenario SC4 only.

Figure 6. Monthly a priori (solid line) and a posteriori
(shaded line) BC emissions for SC1. The vertical lines
represent the uncertainty range of the emission while the
dots are the central values.
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each region are plotted in Figure 8. The total source strength
uncertainty is reduced substantially in January, February
and March. In June, July, and August the reduction of the
total source strength uncertainty is moderate, although the
uncertainties in the two major biomass burning regions:
South America and southern Africa, are reduced by about
80%. However, the inverse model cannot constrain the
biomass emissions in Australia and Indonesia. The increase
in uncertainty in the total source strength in September and
October is due to the increase of Indonesia emissions whose
a priori uncertainty is assumed to be 200%. The a posteriori
emissions in Indonesia are about 35–50% of the total
emission in the peak months of September, October and
November, which results in a large uncertainty for the total
emissions. To understand the how the inverse model per-
forms and why it behaves in this way, the a posteriori
emissions and their uncertainty in each month need to be
examined.
[55] The slight increase of the total a posteriori emissions

in January and February is due to the increase of the
Sahelian biomass emissions. About 80% of the total bio-
mass emissions come from the Sahelian region in the first
two months of the year. In both of these two months, the
model predicted AI is smaller than that from the TOMS AI
(compare Figures 4 and 9). The high AI in the Sahelian
region coincides with the biomass burning black carbon
column burden maximum during this time. The model
results with a posteriori biomass emissions exhibit some
improvement in comparison with the TOMS AI, which can
be evaluated through the c2 statistic (Figure 8). However,
the region with AI � 0.6 is much more confined geograph-
ically than the observations (compare Figures 4 and 9).
Increasing the a priori emissions in this region does not
alleviate this problem in January, and probably indicates
that the meridional flow in this region is too weak during
this time, or that the aerosol removal is too fast. More over,
during January and February, the absorbing aerosols seen
in the observations are a mixture of dust and smoke
aerosols, although the dust contamination in January is
small [Herman et al., 1997]. As mentioned previously, the
data points north of 10�N are excluded in the inverse model
in order to lessen the contamination by dust. Including those
points would further increase the a posteriori emissions. The

a priori relative uncertainty of 50% in the Sahelian region is
reduced tremendously to 5% in January and February, while
the uncertainties in other regions remain unchanged. The
reason is that the AI in the other parts of the world in both
the model and the TOMS observations is small, and thus
unable to constrain the biomass emissions there.
[56] The biomass burning season in the Sahel continues

in March with a weaker source strength, while the burning
in Southeast Asia increases. The inverse model overpredicts
AI in most parts of Asia. From March through August, the
modeled AI is larger than the observed AI over Sahara.
Since dust emissions are not optimized in the inverse model,
the overprediction in this region is associated with the dust
source strength there, and indicates that the dust source
strength is too strong. P. Ginoux (personal communication,
2002) suggested that because the soil moisture data for 1997
were actually for 1996, the dust emissions were not well
known, which may explain part of the discrepancy.
However, the overprediction in Northeast India near the
Bay of Bengal is a combined effect of dust and smoke
aerosols. The dust optical depth in Northeast India is about
50% of the total optical depth, and contributes about 75% to
the AI. Restricting the inverse model in Asia to the region
south of 25�N is necessary in order to minimizing the
impact of dust. If the inverse model is thus restricted, the
a posteriori emissions in Southeast Asia are reduced by 10%
in March, and the relative uncertainty is reduced to 14%,
compared to the reduction of the a posteriori emissions to
83% of the a priori emissions and a relative uncertainty of
12% if the region North of 25�N is included. The compar-
ison with the TOMS AI in biomass burning regions in
Southeastern China degrades because of this reduction.
Total emissions remain almost unchanged, because of the
increase of the Sahelian emissions and the decrease of
Southeast Asian emissions. In the base and other scenarios,
we do not include the regions North of 25�N.
[57] The burning season in South America starts in May

in the a priori emissions and peaks in June, July, August and
September, while the TOMS AI fails to detect any smoke
aerosols (with AI � 0.4) until August. Accordingly, the

Figure 7. Monthly a priori (solid) and a posteriori
(hatched) BC emissions for SC1 in the six regions defined
in Figure 5. The color for each of the six regions is listed in
the legends below the plot.

Figure 8. (top) The c2 of the modeled AI with the a priori
(black line) and posteriori (red line) emissions. (bottom)
Uncertainties of the monthly a posteriori emissions in each
of the six regions defined in Figure 3. The a priori
uncertainties for the regions other than Indonesia are 50%,
while the a priori uncertainty in Indonesia is 200%. Results
are for SC1.

D21306 ZHANG ET AL.: INVERSE MODELING OF BIOMASS EMISSIONS

12 of 21

D21306



Figure 9. Monthly modeled AI with a posteriori emissions for SC1.
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biomass emissions in South America are reduced by 23%,
and 45% in June and July, respectively. On the other hand,
southern Africa emissions are increased by 30% in June. As
a result, the total emissions in June and July decrease. The
comparison of the c2 statistic of the a posteriori modeled AI
with observations shows an improvement of 27% and 20%
in June and July, compared to the a priori emissions,
respectively. The uncertainties associated with southern
Africa and South America emissions are both reduced by
the inverse model, although the reduction in southern Africa
is much larger.
[58] In August and September, the uncertainties in the

biomass emissions in South America and South Africa are
reduced with relative uncertainties of less than 10% for the a
posteriori emissions. The biomass burning emissions in
South America are increased by about 20% while those in
southern Africa remain almost unchanged in August and are
slightly decreased in September. Although the total amount
of biomass burning in the four months (June to September)
is only changed by a small amount, the seasonality in
South America is changed considerably. The a priori
emissions in South America have a smooth increase in
June, July and August while the a posteriori emissions
have a sharp increase in August compared to July. In
southern Africa the a posteriori emissions peak in July,
while the a priori emissions in southern Africa are almost
the same in July and August. Therefore the most important
change due to the inverse model in South America and
southern Africa is the adjustment of the seasonality, while
the adjustment to the total annual average emissions is
relatively small.
[59] The a priori emissions by Liousse et al. [1996] were

based the work by Hao et al. [1990] with improved
emission factors. Hao et al. [1990] prescribe 6-month
burning periods for their databases based on rainfall data
and distribute a percentage of biomass burned in each
month according to the distribution of surface ozone
concentration observed at three African sites and two
South American sites. The AERONET Sun photometer
measurements suggest that the smoke aerosols from South
American forest fires have a short seasonal duration com-
pared to those from African savannah burning [Hsu et al.,
1999], consistent with the a posteriori emissions estimated
here. Galanter et al. [2000] constructed biomass burning
emissions based largely on the work of Richardson [1994]
and Hao and Liu [1994], with monthly fractions of biomass
burning altered on the basis of the AVHRR [Malinggreau et
al., 1989] and TOMS [Herman et al., 1997] satellite
observations. Their seasonality of biomass emissions in
South America is more consistent with the a posteriori
emissions estimated here than with the a priori emissions
in that the ratio of biomass emissions in July, August
and September is 1:2:2 in the work by Galanter et al.
[2000], while these ratios are 1:1:0.6 and 1:2.1:1.5 in the a
priori emissions and a posteriori emissions estimated here,
respectively.
[60] Duncan et al. [2003b] estimated the seasonal and

interannual variation of biomass burning emissions using
the fire count data from Along Track Scanning Radiometer
(ASTR) and data from the AVHRR World Fire Atlas. The
TOMS AI was used as a surrogate to estimate interannual
variability in biomass burning in their study. Their results

indicate that biomass burning in South America starts in
July and generally peaks in August and September, consis-
tent with the peak month of August in the a posteriori
emissions in South America. In southern Africa, the peak
burning starts in July because of biomass burning in south-
westernAfrica, and then has a stronger peak in September due
to biomass burning in southeast Africa in Duncan et al.
[2003b]. The a posteriori emissions in southern Africa suc-
cessfully capture the early peak in July but fail to predict the
late burning in September and October shown in Duncan et
al. [2003b]. This difference is associated with the inconsis-
tencies between theATSR fire count data and the TOMSAI in
the late burning season in southeast Africa [Duncan et al.,
2003b].
[61] Together, the biomass burning emissions in South

America and southern Africa in the four months from June
to September constitute about 70–80% of the total emis-
sions in these four months. In addition to the adjustment in
these two regions, biomass burning in the other four
regions is also adjusted. The emissions in Australia remain
almost unchanged in June and July. Biomass burning
emissions in September are decreased since the model
AI is larger than the TOMS AI. The relative uncertainty of
the Australian emissions is reduced from 50% to about
27% in August and 18% in September. The emissions in
the Sahel are increased in July, August, and September.
However, the corresponding uncertainties are only reduced
by a small amount, compared to the a priori uncertainties.
The increase in the a posteriori emissions may reflect the
fact that the a priori Sahelian biomass emissions are too
weak in these three months, or the increase may be the
result of dust contamination due to the large Saharan dust
source.
[62] The South American emissions are increased by a

factor 3.6 in October and by a factor of 2 in November.
Additional smoke is observed by the TOMS AI in October
and November in the region around the mouth of the
Amazon River (Figure 4). Biomass burning in this region
is usually due to agricultural activities [Setzer and Pereira,
1991]. The October biomass smoke signal in this region is
stronger in 1997 than for any other months in the available
EP TOMS operational period. Therefore a smaller increase
of biomass emissions is expected for these months in years
other than 1997.
[63] The modeled uncertainty is reduced in South Amer-

ica because of the use of the TOMS AI. In addition, the
seasonality of South American Emissions is adjusted
according to the TOMS AI in 1997. The a posteriori
emissions are reduced by 45% in July because the TOMS
AI was very small, less than 0.6 for most regions in South
America. The small TOMS AI value in South America may
indicate little fire activity in July. However, it is possible
that TOMS AI cannot detect the fires because of the fact
that biomass smoke is not transported high enough, or that
the smoke is scavenged out. Additional comparison with
emission data sets in 1997 that do not use the TOMS AI
information is needed to evaluate how realistic the adjust-
ment in our analysis is. Furthermore, the seasonality of 1997
may not be representative of the decadal average.
[64] The most substantial change in the a posteriori

emissions is in Indonesia where the annual emissions are
increased by a factor of 3 to an annual emission source
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strength of 0.65 Tg/yr. The increase in the two peak months
of September and October is around a factor of 8. The
comparison of the modeled AI from the a posteriori
emissions and the TOMS AI indicates that the model still
underestimates biomass emissions in Indonesia consider-
ably. Page et al. [2002] estimated the total amount of
carbon released from peat and forest fires in Indonesia
during 1997 using satellite images of a 2.5 million hectare
area in Central Kalimantan. They used Landsat TM/ETM
(enhanced thematic mapper) images and field observations
to determine the biomass type and fraction of area covered
by each biomass type. Both Synthetic Aperture Radar
(SAR) and Landsat TM/ETM were employed to determine
the burned area. By extrapolating the results from Central
Kalimantan to the entire Indonesian region, they estimated
that the total carbon released from the fire in 1997 was
between 0.81 and 2.57 Gt C.
[65] The emission factor for tropical forest is 0.66 ±

0.31 g BC/dry mass burned [Andreae and Merlet, 2001].
If 50% percent of the burned dry matter is carbon [Hély
et al., 2003; Scholes and Andreae, 2000], then the total BC
emissions corresponding to the estimates by Page et al.
[2002] are between 0.57 and 5.0 Tg. The a posteriori BC
emissions we estimate are only 0.65 Tg and are in the lower
end of this range. Duncan et al. [2003b] estimated BC
emissions for September, October and November 1997 in
Indonesia of 2.6 Tg, and BC+OM emissions of 21.1 Tg.
The total carbon released during the fire was estimated to be
700 Tg, less than the range given by Page et al. [2002].
Thus it appears that the assumed BC emission factor in the
work by Duncan et al. [2003b] is about 1.86 g/kg. If the BC
emission factor had been the value in the work by Andreae
and Merlet [2001], the BC emissions would be 0.92Tg for
these three months which is closer to our estimate. Levine
[1999] estimated that the total particle mass (TPM) release
during the Indonesia fire in 1997 was about 8.2 to 24.9 Tg
C, with a best estimate of 16.6 Tg C. About 94% of this
estimate was from peat burning. The ratio of carbon to TPM
is about 0.6 [Ward et al., 1991]. Therefore the best estimate
of TPM emission is about 27.7 Tg in the work by Levine
[1999]. The total carbon (CO2 + CO + CH4 + TPM) is
242.7 Tg in the work by Levine [1999], much less than that
in the work by Duncan et al. [2003b], but the BC+OM
emission is similar (27.7 versus 21.1 Tg). The a posteriori
TPM emission estimated here is 6.9, about a quarter of what
was estimated by Levine [1999]. However, if most of the
TPM emissions came from peat burning as estimated by
Levine [1999], the smoke aerosols would tend to reside in
the boundary layer and would not have been detected by
TOMS. This could be the main reason that our estimates are
smaller than most of these other studies (see, however,
section 5.2).
[66] The c2 is calculated to evaluate how well the a

posteriori emissions perform in general. An examination of
the c2 of the a priori and a posteriori emissions shows a
moderate to small improvement using the a posteriori
emissions, probably indicating the limitation of the inverse
model. The modeled AI using the forward model has a
different small-scale distribution from that of the TOMS AI,
although the geographic location and distribution over
larger scales usually agrees with the TOMS AI. Two
possible reasons for this discrepancy are (1) the geographic

distribution of biomass burning emissions in the pre-
assigned subregions is not accurate, so that optimizing
biomass burning emissions on a smaller spatial scale is
needed, and (2) the transport model has difficulty in
reproducing small-scale features because of uncertainties
in the horizontal and vertical transport, in wet and dry
deposition, and in the geographic distribution of the a priori
emissions. It is the inability of the forward model to
accurately reproduce the small-scale geographic variation
in AI that limits the capability of the inverse model to
further reduce the c2 between the modeled and TOMS AI.

5.2. SC2

[67] The comparison of the modeled AI based on
the posteriori emission with the TOMS AI in Indonesia
(Figure 4 versus Figure 9) for the base case scenario
indicates that the modeled AI is too small in Indonesia,
suggesting that a further increase of the a posteriori
emissions in SC1 is needed. A possible reason is that small
a priori uncertainty restricts the model capability to adjust
the a priori emissions in order to follow the observations.
The underestimation of the a posteriori emission in
Indonesia probably suggests that the assumed uncertainty
for Indonesia in scenario SC1 is too small. Therefore
the uncertainty (1s) of biomass burning emissions in
Indonesia was increased to 300% in scenario SC2. The
assumed a priori uncertainty in other regions may also affect
the corresponding a posteriori emissions.
[68] In SC2 the uncertainty of the a priori emissions is

increased to 300% in Indonesia and to 100% elsewhere. The
a posteriori emissions and their breakdown into difference
regions are listed in Tables 2 and 3, respectively. The annual
BC emissions in SC2 are 6.87 Tg/yr, an increase of 23%
compared to the a priori emissions and an increase of 9%
over the results of SC1. Increasing the a priori uncertainty
allows the inverse model to adjust the a priori emissions to a
greater extent. This is expected, since the least squares of
the a priori and a posteriori emissions are weighted by the
reciprocals of the square of the a priori error. Therefore the
second term in equation (5) is decreased. The net effect of
increasing the a priori uncertainty in this case is to increase
the a posteriori emissions. In the first five regions, both SC1
and SC2 have larger a posteriori emissions than the a priori
emissions, with the annual a posteriori emissions in SC2
even larger than those in SC1. The emissions in Australia
(region 6), on the other hand, are slightly smaller than those
estimated in SC1.
[69] The difference between the annual emissions in SC1

and SC2 is small in southern Africa, Southeast Asia and
Australia although the May emissions in SC2 in South
Africa are increased by more than a factor of 2 compared
to SC1. In May, the southern African emissions are
increased in order to match the biomass burning signal in
the TOMS AI. The increase is more drastic in SC2, about a
factor of 2, compared to the 40% increase in SC1. The a
posteriori c2 is smaller in SC2 than in SC1, indicating that
the adjustment in SC2 improves the agreement between the
TOMS and the modeled AI. The difference in the Sahel and
South America is moderate in June and July. The decrease
of the South American sources is larger in SC2 than in SC1,
about 40–50%, while the difference in Indonesia is 40%.
The uncertainty of the a posteriori emissions in each region
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increases as a result of the larger a priori uncertainty.
The increase in the a posteriori uncertainty is almost
proportional to the assumed a priori uncertainty because
of the linear propagation of the a priori uncertainty to the a
posteriori uncertainty.
[70] The decrease of the Australian source in June is

rather accidental since there is no indication of overestima-
tion by comparing the modeled AI based on the a priori
emissions and the TOMS AI. The c2 and a posteriori
uncertainty is decreased to a larger extent in July than in
June because more observation data are included in the
inverse model in July, especially in South America.
[71] In August, September and October, the increase of

South America emissions ranges from 40% in August to
400% in October, which is an increase of 0.27 Tg from the a
priori emissions and 0.17 Tg from the result of SC1.The
largest difference between the SC1 and SC2 is the a
posteriori emissions in Indonesia, where SC2 results in
the annual emission source strength of 0.91 Tg, about
40% higher than SC1. The increase of the a priori emissions
in September and October is a factor of 11. Both the a
posteriori c2 and the uncertainty are reduced. Comparing
the result of SC1 and SC2, the uncertainty of emissions in
Indonesia is reduced by a relatively larger extent in SC2,
indicating that the original assumed uncertainty of 200% is
too small. Larger a priori uncertainties also result in a
posteriori emissions for Indonesian fires that are closer to
the estimation of Page et al. [2002], Duncan et al. [2003b],
and Levine [1999] (see text in section 5.1). However, the
estimated emissions for Indonesia are still lower than
previous estimates, probably because the smoke from peat
burning is not detected by TOMS. The magnitude of the
underestimation is difficult to quantify without further
information about the contribution of peat burning to the
total emissions from this region.
[72] The results from two scenarios, SC1 and SC2,

suggest that it is very important to estimate an accurate a
priori uncertainty. An underestimate of the a priori uncer-
tainty does not allow the inverse model to adequately fit the
observations since the a posteriori emissions are very
sensitive to the assumed a priori uncertainty. On the other
hand, if the a priori uncertainty is not the limiting factor, the

a posteriori results are not as sensitive to the assumed
uncertainty.

5.3. SC3

[73] Case SC3 examines the sensitivity of the a posteriori
emissions to the aerosol vertical distribution. Figure 10
shows the vertical distribution of biomass black carbon
calculated by the model at various locations. Over con-
tinents, the biomass smoke layer is relatively well mixed,
extending between the surface and 4 km in the model, while
over the oceans, the smoke concentrations are between 0.5
and 3.5 km and peak between 1 and 2 km. Field campaign
results during the TRACE A period indicated that peak
biomass aerosols were found near 1.5–2.0 km in the source
regions, and between 1.5 and 4. km over the ocean in the
outflow region from the continent [Anderson et al., 1996;
Fuelberg et al., 1996; Browell et al., 1996]. Haywood et al.
[2003] measured the biomass aerosol concentration profiles
during SAFARI 2000. Their results also appeared to have a
more elevated aerosol layer over ocean. The aerosol layer in
the model seems to be slightly lower than in the observa-
tions. However, since the observations took place during the
day when the vertical mixing was the strongest, the differ-
ence may partly be due to the fact that monthly mean
concentrations are plotted for the model, which average
through both the day and the night.
[74] The fact that biomass burning smoke is found to

peak at levels above the surface near the sources is probably
due to the local convection and buoyancy developed by
large fires. It should be noted that in all the scenarios except
SC3, biomass smoke from savannah and forest fires and
biofuel burning is injected at the surface in the model. There
is no treatment to account for the effect of large fires and the
local buoyancy due to these fires. To evaluate the effect of
any possible bias, in scenario SC3, biomass burning aero-
sols due to savannah and forest fires are lifted by 1 km,
while the vertical distribution for other smoke aerosols
remains unchanged. This increases the modeled AI over
the major biomass burning areas, which leads to smaller a
posteriori emissions in SC3 than other scenarios.
[75] The total annual a posteriori emission source strength

in SC3 is 5.68 Tg/yr, only a slight increase over the a priori

Figure 10. (left) Vertical distribution of biomass black carbon at various locations in September 1997.
(right) Locations.
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emissions. The cancellation of the decrease of emissions
from South America in June, July and August and the
increase of emissions from Indonesia leads to a relatively
small adjustment to the total annual emissions. In SC1 and
SC3, the emissions in the Sahel are increased during
January, February, and March, although SC3 has a smaller
increase. In other regions, the direction of adjustment
(increase or decrease) is also consistent in SC1 and SC3,
indicating that the difference between the a priori AI and
modeled AI cannot be readily explained by increasing the
aerosol height from large fires. The adjustment of the a
priori emissions is necessary, although there may be an
overestimation of the a posteriori emissions in scenario SC1
since there is no special treatment for biomass burning
aerosols due to large fires in SC1.
[76] The comparison of the modeled AOD and AI slope

with the observed slope indicates that model agrees well
with the observations (section 2.2). Increasing the height of
biomass smoke aerosols due to forest and savannah fires by
1 km decreases the AOD-AI slope to 0.93 and 0.44 in South
America and in southern Africa, respectively. Since the
AOD-AI slope is affected by the aerosol optical properties
and aerosol height, this suggests that lifting biomass smoke
aerosols due to large fires by 1 km probably causes an
overestimation of the aerosol height. Therefore the results of
SC1 and SC3 probably provide an upper and lower limit for
the inverse model because of the change of aerosol vertical
distribution.

5.4. SC4

[77] The only difference between scenario SC1 and SC4
is that SC4 allows an optimization of the source in region 7
(the rest of the world), while SC1 keeps the source in region
7 fixed in the inverse model. Because the a priori emissions
do not include the temperate and boreal emissions, the
emissions in these grid boxes are zero. In all of our analysis,
TOMS AI at high latitudes is not included because of data
quality issues in these regions (see section 4). The differ-
ence in the total annual BC emissions between SC4 and
SC1 is 0.24 Tg. The annual emissions in the first six regions
remain almost unchanged, while the emissions in region 7
decrease by about 0.28 Tg compared to SC1.
[78] EPA reported air pollutant emission data from 1970 to

2002 by sector on the annual average basis. Unfortunately,
the emissions due to forest wildfires and slash/prescribed
burning are not available for 1997. Since only PM2.5 and
PM10 emissions were reported, we use the emission factor
from a report that EPA supported (W. Battye et al., unpub-
lished report) to convert the PM2.5 to BC emissions. The
total annual BC emissions are 0.059 Tg compared 0.045 Tg
in the a priori emissions and 0.040 Tg in the a posteriori
emissions. The underestimation is partly due to the fact that
observational points in the US are not included in the inverse
model (see the discussion below). In addition, using a
separate source region for North America will improve the
a posteriori emissions.
[79] The decrease of the annual emissions in region 7

including the United States in scenario SC4 mostly comes
from the decrease in February, March, and April. This is due
to the slightly larger emissions in the Sahel in SC4 com-
pared to those in SC1 during those months. The inverse
model increases the emissions in region 7 and decreases the

emissions in the Sahel in order to fit the observations. Since
the emissions from region 7 generally have a weaker
concentration response for those points considered in the
inverse model, the small increase (about 1%) in the Sahel
causes a relatively large decrease in region 7. Similarly, in
March and April, the decrease in emissions in region 7 is
due to a slight increase in emissions in Southeast Asia. This
implies a potential insufficient number of data points in the
inverse model with respect to the region 7 in SC4. For
example, Central America is part of the region 7. While the
model allows the adjustment of the source in region 7 in
SC4, the observed TOMS AI is less than the cutoff value of
0.4 in region 7 and nearby regions, because of relatively
weak biomass burning and perhaps lower-biomass aerosol
layers. The contrast between the large response of the
emissions in regions 1–6 and the small response of the AI
in region 7 leads to a relatively large adjustment of the
emissions in region 7 in some cases.
[80] The c2 for SC4 is close to the result in SC1, except

in April, when it is only 0.37 compared to the value of 0.63
in SC1, because of the large decrease of the emissions in
region 7. The comparison of the a priori modeled AI and
TOMS AI in April indicates an underestimation of AI in
SC1 in Southeast China and Indochina and an overestima-
tion near the Bay of Bengal. Increasing the emissions in
Southeast Asia and decreasing those from region 7 (mainly
to decrease the emissions in India) leads to a better
agreement with the observation.
[81] The uncertainty of the emissions in region 7 is

decreased in March and April and remains almost un-
changed in other months, indicating that the observations
are insufficient to reduce the uncertainty of the emissions in
region 7. This is probably due to the use of the criteria AI �
0.4, causing less observational points to be included in the
inverse model to constrain biomass burning emissions in
region 7.

5.5. SC5

[82] The purpose of scenario SC5 is to assess the uncer-
tainty due to cloud screening. In this case a more rigid cloud
screening criterion is applied, which results in a smaller
monthly average TOMS AI for the data points satisfying
this criterion (section 4). The two reasons for examining a
higher threshold for cloud screening, as mentioned in
section 4, are (1) using only reflectivity data fails to
discriminate between clouds and aerosols and (2) the AI
is larger when biomass smoke aerosols are above cloud.
[83] Figure 11 shows the modeled AI for aerosols above

and below the cloud. When biomass smoke is above the
cloud, the modeled AI is increased by about 20%, because
of the fact that aerosol absorption is enhanced. The increase
becomes larger when the cloud optical depth increases. On
the other hand, AI is decreased by 60–80% when the
aerosol is below the cloud. When the cloud optical depth
reaches 25, the modeled AI is only about 20% of the cloud-
free value. Therefore the effect of clouds on AI depends on
the vertical distribution of the aerosols and the clouds. The
aircraft measurements during the SAFARI 2000 campaign
indicated that the aerosol concentration was well mixed
vertically through 500 mb over land, while over ocean the
aerosol layer was between 850 to 500 mb, which was above
the stratocumulus clouds near 950 mb [Haywood et al.,
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2003]. Therefore the AI is probably larger than it would be
in cloud free regions over the ocean due underlying cloud
while the change in AI due to clouds over land is hard to
determine. Using a reflectivity of less than or equal to 15% to
select cloud free regions results in a monthly average AI with
virtually no data points exceeding 1.5 (not shown here).
[84] The annual biomass black carbon emissions in SC5

is 5.88 Tg/yr, 0.4 Tg less than those in SC1 where the cloud
screening reflectivity is 40%. The monthly emissions and
uncertainty are very similar to those in SC1, although the
monthly emissions in SC5 are somewhat smaller. The
largest change is in South America, where emissions are
reduced from June to September but increased by a large
amount in October. The annual a posteriori emission in
South America is almost the same as the a priori
emission. The annual emission source strength in Indonesia
is 0.58 Tg/yr, a large increase of the a priori emissions of
0.22 Tg/yr there, but slightly smaller than the result for
SC1. The difference between the a posteriori emission in
SC5 and SC1 is about 10% in the Sahel, southern Africa
and Indonesia, while it is about 17% in South America.
Emissions in Southeast Asia and Australia are almost the
same in SC5 as in SC1.
[85] The adjustment in the a posteriori emissions indi-

cates that cloud screening cannot explain the discrepancy
between the model and the observations. However, the
difference between emissions in SC5 and those in SC1 is
smaller than the difference of the monthly mean TOMS AI
in the two scenarios, partly because of the fact that the
locations with larger monthly mean TOMS AI values in
SC1 are associated with large daily standard deviations
since the daily variation is large near the source regions.
Therefore the a posteriori emissions are less sensitive to the
AI value of these points.
[86] The cloud screening does not appear to have much

effect on the a posteriori uncertainty, which is almost the

same in SC1 and SC5 in each region. The decrease of the a
priori c2 is also similar in SC1 and SC5, although the a
priori c2 is different in the two scenarios because of
different monthly mean TOMS AI. Therefore cloud screen-
ing seems to have a relatively small effect on the inverse
model results.

5.6. SC6

[87] In the first five scenarios, the covariance matrix is
assumed diagonal, i.e., the error of each location is inde-
pendent. Since the error of adjacent locations is dependent,
the purpose of scenario SC6 is to test the sensitivity of this
assumption. However, there are some issues with how the
covariance is calculated. When launched in July 1996, the
EP TOMS initially had a lower orbit of 500 km. In
December 1997 it was elevated to an altitude of 739 km.
Because of the lower orbit in 1997, the daily coverage was
only 60% of the Earth’s surface in the tropics, where major
biomass burning occurs. The covariance of two locations is
calculated for the period when the EP TOMS data are
available at both locations. In the tropics, the number of
valid days per month for any two locations is frequently
less than 10. The small sample set in the calculation
introduces a large bias to the real covariance between two
locations. Since the overlapping set is calculated separately
for each pair of locations, each different pair of locations
have different overlapping sets, and the size of the set is
always smaller than what is used to calculate the standard
deviation. As a result, the covariance matrix computed here
is an approximation of the ‘‘true’’ covariance matrix, where
all covariances are obtained from the same set of observa-
tions. To ensure that the covariance matrix O is nonnegative
definite, meaning XTOX � 0, where X is an arbitrary
vector, a smaller set of locations for the calculation of the
covariance matrix are selected. The size of the data set is
reduced by at least 70% in general for this procedure.
However, since the size of the data set before reduction is
around 1000 for each month, this left a data set with about
100–300 elements for each month, which is still large
enough to carry out an inversion. The inverse model results
in SC6 are based on the reduced data set generated from the
original set in SC1.
[88] The results of SC6 are listed in Table 2 and 3. The

total annual emission is close to that in SC1, although there
are larger differences in the regional annual emissions. The
largest difference is in South America, where a relative
difference of �18% is found. In most other regions, the
difference between the annual emissions in SC6 and SC1 is
around 10% or less. The a posteriori emissions in SC1 and
SC6 are very close to each other. The annual regional
emissions are within 15% of each other for most regions.
However, the c2 of both the a priori and a posteriori AI is
rather different from that in SC1. There are two reasons.
First, the off-diagonal covariance is included in SC6.
Depending on the covariance matrix, the c2 can either be
larger or smaller than that in SC1. An increased c2 can
occur when the error of any two locations is more likely to
be positively correlated. Therefore omitting the off-diagonal
terms underestimates the total error. Second, the data points
in SC6 are only a subset of those in SC1, which also causes
a difference in c2. Generally speaking, the uncertainty in
SC6 is larger than that in SC1. Using fewer data points is

Figure 11. Sensitivity of AI to biomass aerosols above
and below the cloud, assuming the BC fraction is 10% of
the total mass and the aerosol optical depth is equal to 2.
The aerosol size distribution is listed in Table 1. The solar
zenith angle is equal to 40 degrees. The surface reflectivity
is 0.06. The mean altitude of the aerosol layer is 3 km in all
cases. The cloud is in the layer between 1 and 2.5 km in the
case where the aerosol is above the cloud and is in the layer
between 4 and 5.5 km in the case where the aerosol is below
the cloud. In addition, the cloud optical thickness is set to
the same value at both 331 and 360 nm.
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one reason for this increase since fewer observational
constraints are provided for the inverse model. Omitting
the off-diagonal elements in the covariance matrix as is
done in SC1 will tend to underestimate the observational
uncertainties, resulting in a smaller a posteriori uncertainty.

6. Summary

[89] In this study, an inverse model is applied to improve
current biomass burning emissions using the TOMS AI. The
inverse model technique applied here optimizes the monthly
biomass smoke emissions in the major biomass burning
regions. The EP TOMS AI in 1997 is employed in the
inverse model, while the DAO meteorology data in 1997 are
employed in the transport model. While dust emissions are
included in the transport model in order to obtain the correct
modeled AI in the Sahel and in India they are not subject to
optimization. Regions where absorbing aerosols are mainly
dust aerosols are excluded from the inverse model in order
to avoid adjusting biomass smoke emissions to optimize the
discrepancy between the model and observations in these
regions.
[90] The annual a posteriori biomass black carbon emis-

sions in the base scenario are 6.31 Tg/yr, only 13% higher
than the a priori emissions. The increase of biomass
emissions in the Southern Hemisphere is larger than that
in the Northern Hemisphere. The a posteriori modeled AI
generally shows better agreement with the observations in
major biomass burning regions. The inverse model produ-
ces much larger emissions in Indonesia corresponding to the
large fires in Indonesia in 1997. The difference between the
a posteriori and a priori emissions is about a factor of 3 in
Indonesia. A sensitivity test with increased a priori uncer-
tainties resulted in higher emissions in Indonesia. Although
the monthly a posteriori emissions are in the uncertainty
range of the a priori emissions, the relative uncertainty in
the monthly emissions is decreased. On the other hand, the
absolute uncertainty in the monthly emissions is increased
because of the larger Indonesian emissions from August
through November.
[91] Better agreement between the model and observation

in Indonesia suggests that the a priori uncertainty in
Indonesia is underestimated in all scenarios except SC2.
In other regions, the difference between SC1 and SC2 a
posteriori emissions is relatively small. The uncertainty
increases proportionally to the a priori uncertainty in SC2.
The small decrease in the c2 indicates that the ability of the
inverse model to further minimize the difference between the
observations and the model is limited because of the inability
of the transport model to reproduce the spatial distribution of
the observations on a small scale. The results of SC2 suggest
that the a priori uncertainty is not the limiting factor in
determining emissions except in Indonesia.
[92] Since the modeled AI is used in the optimization, the

sensitivity of modeled AI due to different parameters is
discussed. The modeled AI is more sensitive to the aerosol
vertical distribution in the model and less sensitive to other
parameters. Therefore the sensitivity of the a posteriori
emissions to the aerosol height is examined in scenario
SC3. SC3 has the smallest a posteriori emissions of all the
scenarios, suggesting that the aerosol vertical distribution
does indeed have a large impact on the inverse model

results. On the other hand, comparison of the modeled
aerosol vertical distribution and the observations only
reveals a slight underestimation of the modeled aerosol
height. The discrepancy between the modeled AOD and
AI slope and the observation in SC3 suggests that the
assumption that biomass burning aerosols due to large fires
are lifted by 1 km causes an overestimation of aerosol
height. The results of SC3 probably give a lower limit to the
a posteriori emissions because of the model underestimation
of aerosol height.
[93] A more restrictive cloud screening threshold also

leads to smaller a posteriori emissions than those in the base
scenario SC1, since the monthly mean TOMS AI is smaller.
The effect of clouds depends on the vertical distribution of
the aerosol and the clouds. Using a more restrictive cloud
screening criteria reduces the contamination of the observed
AI by clouds. However, it tends to remove strong aerosol
events since both aerosols and clouds can increase the
reflectivity. The cloud screening technique needs further
study. For example, a weighting as a function of reflectivity
could be added to the cost function to minimize the effect of
cloud contamination instead of using the reflectivity to
remove data with a cloudy scene.
[94] Allowing optimization of region 7 has almost no

effect on the emissions in the first 6 regions, although the
emissions in region 7 are decreased. Since the observational
data points included in the inverse model are selected using
the criteria that the AI value � 0.4, there are not enough
observational points in the inverse model to constrain
biomass burning emissions in region 7. Relaxing this
criterion is needed in order to produce more robust a
posteriori emissions in region 7.
[95] Compared to the base scenario where the off-

diagonal elements describing the covariance between
different locations is omitted, including off diagonal
covariances in the inverse model results in almost identical
annual emissions, while the monthly emissions are
generally within 20% of the base scenario. When the off-
diagonal covariance is neglected, the uncertainty of the
observations is underestimated, causing an underestimation
of the uncertainty of the a posteriori emissions. However,
the sample size used for computing covariance is small in
this study. The computed covariance may not represent
an accurate value. Using the more recent TOMS data
with larger total coverage can improve the estimation of
covariance and the inverse model results.
[96] The total a posteriori BC emissions range from 5.68

to 6.87 Tg/yr in different scenarios for year 1997. The
results of sensitivity scenarios suggest that a posteriori
emissions are most sensitive to the assumed uncertainty of
the a priori emissions, and the altitude of aerosol layer. The
cloud screening criteria is also important. Since the TOMS
AI is sensitive to the altitude of the aerosol layer, the inverse
modeling result is subject to this uncertainty in modeling the
aerosol vertical distribution. In addition, the TOMS AI is
less sensitive to aerosols in the boundary layer. Smoke
aerosols from peat burning and biofuel burning remaining
in the boundary layer are probably not detected by TOMS.
Therefore the inverse model results based on the TOMS AI
probably only apply to open biomass emissions.
[97] Another limitation of this analysis is that biomass

burning in temperate and boreal regions is not included in
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the a priori emissions. Optimizing boreal and temperate
biomass burning using the TOMS AI is not exercised in this
study because of the lack of information in the a priori
emissions, and the limitation of the TOMS AI at higher
latitudes. Duncan et al. [2003b] used the TOMS AI south of
60�N from late spring to early fall to study the interannual
variabilities of global biomass emissions, including boreal
and temperate fires. It is possible that the same approach can
be applied to the inverse model to obtain boreal and
temperate biomass burning emissions. This is especially
interesting because the interannual variability of biomass
burning in the temperate and boreal region is much more
drastic than in the tropics. Area burned can vary by an order
of magnitude in boreal regions alone. For example, 1998 was
an extreme year for boreal fires, compared to the relatively
calm 1997 [Amiro et al., 2001a, 2001b; Conard et al., 2002;
Stocks et al., 2002; Kasischke and Bruhwiler, 2003; Soja et
al., 2004]. At the same time, boreal regions are where the
largest amount of terrestrial carbon resides [Apps et al.,
1993; Zoltai and Martikainen, 1996; Alexeyev and Birdsey,
1998]. Fires in boreal and temperate regions play an impor-
tant role in global carbon cycle, which warrants specific
attention to these regions in a future investigation.
[98] Furthermore, the inverse model results are dependent

on the a priori emissions and the forward model. The a
posteriori emissions are subject to uncertainties in the model
transport. However, this method provides an alternative way
to assess the total biomass emission for a specific year and
can avoid uncertainties present in bottom up techniques
used to build emission inventories. Multiple years of bio-
mass emissions can be generated using this approach in a
future investigation to study the interannual variability of
biomass burning.
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